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A B S T R A C T

Catch per unit effort (CPUE) is a widely used index of population abundance for informing stock assessments for
the purpose of estimating population status and setting fishing policies. However, for CPUE to be an unbiased
index, influences that are not related to population abundance (e.g., spatial variation in effort and temporal
changes in gear efficiency) must be accounted for in analyses known as CPUE standardization. In longline
fisheries, one important factor that can affect CPUE is the spacing between hooks (‘spacing effect’), which in-
fluences effective effort and has largely been ignored in previous analyses. Here, we use the Pacific halibut
(Hippoglossus stenolepis) long-line fishery as a case study to explore the spacing effect. Both commercial and
experimental (fishery-independent) data with hook spacing, and a survey-based CPUE series, are available for
this fishery. It thus provides a unique opportunity to explore the effect of hook spacing and its effect on CPUE
trends. We quantify this effect using non-parametric and parametric relationships inside a spatially-explicit
(geospatial) CPUE standardization model for commercial data, and non-linear mixed-effects model for experi-
mental data. We found a clear non-linear spacing effect (i.e., hooks were less effective the closer they were), but
accounting for space had a larger effect on CPUE trends than accounting for hook spacing. For this stock, it is
likely the effect of hook spacing on CPUE was minimal due to little variation in average hook spacing over time.
Regardless, historical and future trends in hook spacing can have important effects on longline CPUE standar-
dization, highlighting the value of collecting this information. Accounting for hook spacing effects in other
fisheries may improve estimates of trends in relative abundance and lead to better management.

1. Introduction

Catch per unit effort (CPUE) is a key source of information used to
manage a wide range of commercially valuable species such as tunas, as
well as vulnerable species like sharks (Maunder and Punt, 2004). CPUE
is typically assumed to provide an index of population abundance (N),
that is robust for detecting trends and informing stock assessments
provided that catchability (q) and selectivity are constant through time
and space (i.e., CPUE = qN). However, this assumption can be violated
for a variety of reasons. One important case is when catchability varies
in time and space, such as when fish densities interact with fishermen
behavior, and thus spatial patterns of catch (Branch et al., 2006;
Walters, 2003). Another important case is when the unit of effort varies,
such as with changing technological (e.g., gear) and economic factors
or targeting strategies (Bishop, 2006). Either case undermines the
comparability of CPUE among years and areas, and can lead to effects
like hyperdepletion or hyperstability (Harley et al., 2001), which
complicates interpretation of CPUE trends as accurately reflecting true

stock status trends (e.g., see Myers and Worm, 2003; Polacheck, 2006).
CPUE trends are therefore typically standardized to remove effects
other than changes in abundance, where possible, so they more accu-
rately reflect changes in abundance (Bishop, 2006; Maunder and Punt,
2004).

Standardizing CPUE from baited longline gear has the additional
complexity that the probability of catching a fish, and thus catchability,
depends on volitional (foraging) behavior that is affected by gear
configuration and environmental variables (Stoner, 2004). This has
been shown for important pelagic and demersal species caught by
longline (Bigelow and Maunder, 2007; Stoner and Ottmar, 2004; Stoner
et al., 2006; Ward, 2008). Thus, it is important to consider variation in
configuration for longline gear in CPUE standardization. Longline gear
is a simple, but versatile, form of gear where baited hooks are attached
to a mainline fixed at regular intervals (‘fixed’ gear), attached dyna-
mically as it is deployed (‘snap’ gear), or attached at pre-determined
points and deployed via an automated machine (‘autoline’ gear; see
Bjordal and Løkkeborg, 1996). Longline gear can be configured to

http://dx.doi.org/10.1016/j.fishres.2017.10.004
Received 3 March 2017; Received in revised form 19 September 2017; Accepted 7 October 2017

⁎ Corresponding author.
E-mail address: monnahc@uw.edu (C.C. Monnahan).

Fisheries Research 198 (2018) 150–158

Available online 26 October 2017
0165-7836/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/01657836
https://www.elsevier.com/locate/fishres
http://dx.doi.org/10.1016/j.fishres.2017.10.004
http://dx.doi.org/10.1016/j.fishres.2017.10.004
mailto:monnahc@uw.edu
http://dx.doi.org/10.1016/j.fishres.2017.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2017.10.004&domain=pdf


target demersal species such as Pacific halibut (Hippoglossus stenolepis)
and sablefish (Anoplopoma fimbria), as well as pelagic species such as
bigeye tuna (Thunnus obesus; see Løkkeborg et al., 2010). Appropriately
accounting for gear configuration in CPUE standardization is thus key
for a wide range of important fisheries.

Although ostensibly simple, interactions between longline gear and
fish foraging behavior are complicated. A motivated fish must detect,
locate, and then consume bait, but each of these factors can strongly
depend on varying environmental conditions such as temperature,
turbidity, and light level, among others (Stoner, 2004). In addition,
intraspecies local density and size structure can affect fish behavior,
such as when there is social facilitation with greater numbers of fish or
a length hierarchy for feeding (Stoner and Ottmar, 2004; Stoner et al.,
2006). Likewise, both intraspecies and interspecies competition for
hooks can play an important role in catch rates, particularly when
differences in aggression exist (Rodgveller et al., 2008; Skud, 1978).
These interactions complicate the definition of a unit of effort for
longline gear, which would ostensibly be a hook (i.e., catch per hook).
However, the spacing between hooks influences the foraging behavior
of fish by affecting the region baits are detected, called the capture field
or active space. Ideally, hook spacing would be measured between
hooks directly, but is typically only available as measured along the
mainline. Successfully accounting for the effect of hook spacing on ef-
fort could thus improve CPUE standardization for longline gear.

Three hypotheses have been proposed for how the capture field
changes with hook spacing, which we refer to as the ‘spacing effect’
(Fig. 1; Hamley and Skud, 1978). Consider a hypothetical set with h
hooks with varying hook spacings (and thus set length) fished at rea-
sonable densities (e.g., hook saturation is not an issue; Hamley and
Skud, 1978) and uniformly distributed fish. In the length hypothesis, as
spacing and set length decreases, overlapping capture fields compete
with each other, and catch per hook will decrease (e.g., Eggers et al.,
1982). In this case, the length of the set would be the unit of effective
effort. Alternatively, in the hook hypothesis, overlapping capture fields
increase fish response, canceling out the effect of hook competition, and
catch per hook is constant (except where high density might lead to
hook saturation). In this case, the unit of effort would be the number of
hooks, and could occur when increased odor plumes from overlapping
baits increased fish response from a wider area (Sigler, 2000). Lastly,

the spacing hypothesis is intermediate, such that hooks spaced widely
enough are effectively independent, but hooks closer together compete,
to some degree. In this case, the number of hooks are adjusted ac-
cording to hook spacing, so that an “effective hook” is the unit of effort.
Which of these hypotheses (hook spacing effect) is true is driven by the
foraging ecology of the species of interest, not the gear itself, and is
important for CPUE standardization because it defines the appropriate
unit of effort for the gear.

The importance of correctly determining effective effort in a long-
line data set also depends on properties of the gear. Consider a case
where hook spacing is consistent for all years and vessels. In this case,
using the number of hooks or length of line will be equivalent up to a
multiplicative factor which gets absorbed into catchability and leading
to the same trend. However, ignoring effective effort when there is
variation in hook spacing across either time, space, or vessel, may po-
sitively or negatively bias effort for some sets and undermine the re-
lationship between density and CPUE. Perhaps the most important case
is when an annual trend in hook spacing exists (e.g., consistent re-
duction in spacings over a decade), which may result in a biased ef-
fective and assumed effort (and thus CPUE), potentially creating a trend
in apparent CPUE that is not related to abundance. This was the case in
the Pacific halibut fishery with a notable shifts toward wider spacings
from 1955 to 1970, resulting in misleading CPUE trends (Skud, 1972).
Similar concerns remain because of trends over time and space in the
composition of gear type, since each has a different spacing distribution
(Fig. 2).

To investigate the spacing effect for Pacific halibut, Hamley and
Skud (1978) initiated an experimental study (i.e., controlled fishing),
but these data have insufficient samples at small spacings to adequately
quantify this effect over its current applied range. In contrast, recent
commercial fishery data have wide variation in hook spacings, and
provide an opportunity to quantify and contrast the spacing effect to
that from experimental data. In this study, we investigate the spacing
effect for Pacific halibut, and its implication for standardized CPUE.
First, we develop and apply a spatially-explicit (spatiotemporal) model
to commercial catch data to estimate standardized CPUE trends while
simultaneously estimating the hook spacing effect. Then, we reanalyze
the experimental data from Hamley and Skud (1978), and compare the
two relationships and test whether the same information about the
spacing effect is available in commercial catch data. We conclude by
discussing and demonstrating how these techniques can be used to
improve CPUE standardization in longline fisheries.

2. Materials and methods

2.1. Effective hooks

We hypothesized that as the distance to its neighbors varies, so will
its power and thus effective effort of a hook (Fig. 1). We thus needed a
way to convert nominal hooks into effective hooks. The first step was to
quantify the spacing effect with a function (f) that relates expected
catch per hook with hook spacing. We explore three possible relation-
ships below.

Next, we adopted the approach taken by Hamley and Skud (1978)
and chose a reference spacing, creating what could be thought of as
relative hook power. We used 18 ft (5.5 m) as a reference in this study
to maintain continuity with previous studies, and due to historical re-
levancy in the fishery. Relative hook power is unit-less and represents
the relative ratio in efficiency between hooks fished at different spa-
cings. For instance, a hook with a relative power of 0.5 at 10 ft indicates
that we expect half the catch from that hook compared to if it were
fished at 18 ft, all else being equal. We then calculated the number of
effective hooks in a set as:

= ⋅h s h f s f( ) ( )/ (18)effective (1)

where heffective is the number of effective hooks, h the nominal (reported)

Fig. 1. Stylized representations of three hypotheses for how the power of a hook changes
with hook spacing, for a set with the same number of hooks but increasing total length
and thus hook spacing. In the hook hypothesis, the hooks do not compete and thus the
effective effort is the nominal hooks. In the length hypothesis, hooks compete at all spa-
cings such that the length of the set is the effective effort. Lastly, the spacing hypothesis is
intermediate and hooks compete at lower spacings only. Figure recreated from Hamley
and Skud (1978).
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number of hooks, s is the distance between hooks (in ft), and f is a
mathematical function relating hook spacing and expected catch per
hook (defined below). Note that by definition sets fished with 18 ft
spacings will have equivalent nominal and effective hooks, but will be
larger or smaller than the nominal hooks depending on the spacing.

To explore the shape of f we used three different forms. First, we fit
one without any effect of hook spacing:

fconstant(s) = 1. (2)

This constant form ignores hook spacing and would be necessary,
e.g., if spacings were not reported or could not be calculated from re-
ported skate length and number of hooks.

We also used a flexible random walk ‘smoother’ (i.e., non-para-
metric) form, from which the shape of the hook spacing relationship
can be elucidated with few a priori assumptions. We arbitrarily fixed the
initial spacing effect to be 1 at 1 ft, since it gets canceled out in cal-
culating effective hooks in Eq. (1). Larger spacings were determined by
multiplying the previous spacing effect by a lognormal deviation. The
deviations were modeled as random effects with a normal distribution:
τ ∼ N(0, σd). Specifically, the smoother form is defined as:

= ⎧
⎨⎩

=
− ⋅f s f s e( ) 1 if s 1

( 1) otherwise.smoother τs
(3)

This form assumes spacings are discrete (i.e., whole numbers), but
interpolation between discrete spacings could be used with fractional
spacings. In this study, spacings were discrete and so no interpolation
was done.

Lastly, we fit a generalized version of the non-linear parametric
relationship used in Hamley and Skud (1978):

= − −( )f s α e( ) [1 ].parametric
β s λs (4)

As with the smoother form, the parameter α cancels out in the re-
lative hook calculation (1) and is thus fixed arbitrarily at α= 1. We
note that this formula represents the spacing hypothesis directly, but can

also represent the hook and length hypotheses as special cases (as λ → ∞
or β → 0, respectively). For this form, it is also possible to calculate an
effective hook at infinite spacing, h∞ = h(∞), analytically, which
quantifies how close to independent hooks are at 18 ft. Below we fit the
smoother form to explore the shape of the spacing effect, the parametric
form to calculate relative abundance trends, and the constant form to
test the effect of ignoring hook spacing.

2.2. Analysis of fishery-dependent data

2.2.1. Data
These data come from International Pacific Halibut Commission

(IPHC) commercial logbooks and are summarized in Monnahan and
Stewart (2014). Logbooks are required to be maintained, but only
logbooks representing about 73% of landings were available in the
IPHC database. The basic datum is a single commercial demersal
longline set made from linking together sections (skates) of gear. After
soaking, gear is retrieved and total legal-sized weight for the set re-
corded. Information is not collected on sub-legal halibut or other spe-
cies, and is thus not available for this study. Set-level information is
recorded in logbooks, and later collected and collated into an IPHC
database. There are approximately 700,000 recorded sets available over
the time period 1991–2015, ranging from northern California to the
Bering Sea. We used the raw data (sets) in our analyses, but only pre-
sented obscured locations and data summaries due to data con-
fidentiality.

In addition to total catch, these fishery-dependent data contain
various information useful for CPUE standardization, such as the type of
longline gear (fixed, snap, or autoline), hook spacing, nominal hooks,
and set length, and hook size. For most sets, the latitude and longitude
at the beginning and end of the set were also available. Although en-
vironmental factors are known to influence catch rates (Stoner, 2004;
Stoner et al., 2006), the only environmental covariate available here is
depth, calculated as the average of the beginning and end of each set.

For computational convenience, we narrowed the dataset down in

Fig. 2. Properties of the fishery-dependent
data (commercial catches). (a) The dis-
tribution of hook spacing within each of the
three gear types. (b) Trends in proportion of
catches by gear type by weight. (c) Annual
distribution of hook spacing for all gear
types (small points; jittered for clarity) and
means (large points).
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several ways. First, we focused on data from the central Gulf of Alaska
starting in 1996 because some previous geographic coordinates were
recorded irregularly. We also filtered out sets without spatial co-
ordinates or missing other key information. A small percentage of sets
had zero catch (2.85%) and were excluded since they may represent
targeting of other species and the reporting rates were likely not con-
sistent over time. This step seemed reasonable because preliminary
exploration of sets with zero catches had no apparent difference in hook
spacing distributions. We also filtered out sets which were longer than
18 miles or had more than a 50 fa (91.44 m) difference in depth at the
set endpoints. Initial exploration suggested a relatively minor effect on
the results due to the filtering. After filtering the data there were ap-
proximately 100,000 sets.

2.2.2. Spatiotemporal model
To explicitly account for space in our standardization, we fit spa-

tiotemporal models (Clark, 2007; Cressie and Wikle, 2015) to the
commercial logbook data. These tools are used in many ecological
fields, including estimating spatial densities of fish (e.g., Kai et al.,
2017; Shelton et al., 2014; Thorson et al., 2015). In this modeling
framework, the distribution of fish density is assumed to arise from
unobserved environmental and biological factors, and to vary smoothly
in space and time. Further, this distribution can be represented as a
Gaussian random field, such that a finite set of points in space will have
a multivariate normal distribution with spatial dependence captured by
a covariance matrix.

Specifically, we model the relative fish density for set i, Di, as:

= + + + + +D β β y β d β d ω εexp( )i y i d i d i c c y0
2

,i i i i1 2 (5)

for depth d and year y. The first four terms correspond to the typical
component of a standardization, and the last two make up the spatial
component. We adopted the spatial hierarchical statistical modelling
approach (Cressie and Wikle, 2015), meaning we fit a vector of random
effects to all years (baseline spatial effects), ω, and separate vectors for
each year (spatiotemporal effects), ε(y), with separate covariance ma-
trices, but the same geostatistical decorrelation range (κ). These random
effects determine the density of fish in a particular spatial cell (indexed
by ci – see below). The result is an approximately smooth surface re-
presenting fish density, where each cells density is affected (correlated)
to all other cells based on distance between them. We estimated an
independent surface in each year. Specifically, the random vectors were
distributed as:

∼
∼

ω
ε

MVN
y MVN

(0, Σ )
( ) (0, Σ )

ω

ε (6)

Because densities are observed imperfectly, there is also an ob-
servation component of the model which accounts for expected catch,
given density and external factors such as the number and spacing of
hooks, gear type, and vessel. We define the expected catch, μi, as:

= ⋅ ⋅μ h s D q( ) ,i effective i i i (7)

where D is defined in Eq. (5) and = +q g ηexp( )i i vi is the catchability for
gear type g (i.e., fixed, snap or autoline), and vessel random effect ηvi for
vessel vi, and where η∼ N(0, ση). The vessel effect was included be-
cause we expect different vessels to have different fishing efficiencies
and thus different expected catch, all else (spatial variation in catch-
ability due to behavior or competition with other species) being equal
and assumed to be part of the error structure. If unaccounted for, this
unmodeled variation would appear as observation error. We further
assume observed catches, C, have a log-normal distribution with esti-
mated observation error σobs: ∼C N μ σlog (log , ).i i obs

2

Given the number of data points and resulting sizes of covariance
matrices, this model is computationally infeasible. We therefore fol-
lowed the lead of Thorson et al. (2015) and simplified the model in
three ways. First, we approximated the random field by binning the

data points into smaller regions or cells (defined by m “knots”), which
reduced the dimensionality of the covariance matrices from n to ap-
proximately m, an approach known as predictive process modeling
(Banerjee et al., 2008). The placement of the knots was determined
using the R function kmeans (R Core Team, 2017), which uses a clus-
tering algorithm to partition the data such that the sum of squares from
points to the assigned cluster centers is minimized. We then used the R
package INLA (Lindgren and Rue, 2015) to create a mesh from the
resulting cluster centers. The result is a distribution of cells within
which all data points were associated with the same spatial random
effect. Initial exploration suggested that 2000 knots were sufficient to
achieve convergence of the approximation (i.e., further increases re-
sulted in no substantial changes to results).

Second, we reduced the number of parameters of the covariance
matrices by using a Matérn semivariogram function with smoothness
ν= 1 (Cressie and Wikle, 2015). The Matérn function relates the cov-
ariance between two points (or centers of cells) as a function of the
distance between them, given range and variance parameters which are
estimated from the data (Royle and Wikle, 2005). We further assumed
isotropy and stationarity of the spatial process so that the orientation of
the distance made no difference, and the spatiotemporal process, Σε,
was constant between years.

Lastly, we adopt the stochastic partial differential equation ap-
proach which converts the Gaussian random field into a Gaussian
Markov random field (Lindgren and Rue, 2015; Lindgren et al., 2011).
With this technique cells that are not directly neighbors are assumed to
have zero covariance (i.e., be independent). By having non-zero cov-
ariance only for direct neighbors, the inverse covariance matrix is
sparse (has more off-diagonal zeros) which reduces computation
(Lindgren et al., 2011). These simplification techniques are widely used
in geospatial modeling and greatly reduce the computational load,
while retaining the key properties of the spatial process of interest,
making an analysis of 100,000 data points feasible. We provide model
code and further details of our analyses in Appendix A (Supplementary
material).

Fully exploring a CPUE spatiotemporal standardization model for
commercial catch data is beyond the scope of this paper. Here our focus
is on accounting for enough of the biological and fishery properties to
facilitate estimation of the hook spacing effect. We thus consider our
spatiotemporal model a simplified analysis useful as a proof of concept,
but note there are independent estimates of relative abundance trends
from a scientific survey over the same time and space (Stewart and
Monnahan, 2016), against which we compare and contrast our pre-
dictions.

2.2.3. Calculating CPUE trends
In contrast to other CPUE standardization models which explicitly

model relative catch rates, our spatiotemporal model predicts density in
each cell. From these we multiply cell density by its area (ac), and then
sum all cells to get annual total relative abundance, Ay:

Ay = ∑cacDc,y. (8)

This calculation assumes that the process of selecting sampling sites
is independent of the underlying biological process (density). This is
true for surveys (Thorson et al., 2016, 2015), but here it is violated
because captains are likely targeting areas with higher densities of fish.
This is known as preferential sampling and can lead to biased inference
(Diggle et al., 2010). Here our focus is on the hook spacing effect, and
note that this is an open issue and analyses used for management should
further investigate the bias and potentially mitigate it in the model
(Carruthers et al., 2011; Conn et al., 2017; Thorson et al., 2016;
Walters, 2003). Here we calculate relative abundance trends with and
without a spatial effect, and with and without a hook spacing effect to
quantify the relative effects of these aspects.
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2.3. Analysis of experimental data

2.3.1. Data
The ‘experimental’ data come from chartered commercial vessels

fishing parallel sets of fixed gear with variable hook spacing (6–40 ft),
repeated every day for 3–19 days at the same location (Hamley and
Skud, 1978). These trips were repeated at different locations, in dif-
ferent years, but not always by different vessels. Catches varied by site,
reflecting the underlying spatial variability in fish density (Fig. 3). As
with the fishery-dependent data, we filtered out 11 sets with zero cat-
ches (2.7%), leaving 397 sets from 14 distinct locations. There were
experimental sets with few fish, suggesting sets with zero catches may
be a natural part of the distribution. Despite this, we still removed these
sets to more closely match the fishery-dependent data analysis, and
because we do not expect them to influence estimates of hook spacing.

These data differ from the fishery-dependent data because they
were collected under a controlled sampling protocol. Nevertheless, the
experimental data were unbalanced with respect to hook spacing, re-
plicates, and vessels (Fig. 3). Local depletion was also a concern given
that the same area was fished repeatedly, but for a variable number of
days. Perhaps more importantly, there were few experiments with hook
spacings at less than 10 ft, which is currently a commonly used spacing
in the fishery.

2.3.2. Parametric hook spacing model
New methods and software now exist to take into account the

complexities of the data which were largely ignored in the original least
squares analysis (Hamley and Skud, 1978). Specifically, we refit these
data using non-linear mixed effects model that accounts for site-specific

differences and local depletion. This model structure is widely used
throughout ecology and fisheries, and better accounts for the data
complexities and provides approximate uncertainty estimates about the
fit and derived quantities (Royle and Dorazio, 2008).

As with the spatiotemporal model (7), catch was predicted as a
function of density, hook spacing, and catchability:

= ⋅ ⋅μ h s D q( )i i i i i (9)

In contrast to the spatiotemporal model, we assumed sites are dis-
tant enough to effectively be independent. Thus, we estimated site level
densities as independent random effects, and included a local depletion
term γ that such that density decreases exponentially with day d:

= −D ei
χ γdsi i, where ∼χ N μ σ( , )η η

2 is the vector of site densities. No
other information on environmental or gear quantities were available.

We only used the fparametric (4) hook spacing form, and assumed that
λ = 1 due to the lack of information at small spacings in the data. Since
the data were collected in a controlled manner, we further set q= 1,
such that the site level density effect captures catchability. Lastly, we
assumed that observed catch is lognormally dis-
tributed, ∼C N μ σlog (log , )i i s

2
i , where σs is the site-specific observation

random effect, assumed to be normally distributed: ∼σ N θ σ( , )s θ
2 . We

provide further details of the model and the data in Appendix A (Sup-
plementary material).

2.4. Model fitting

Both the spatiotemporal model and the parametric hook spacing
model are non-linear hierarchical (mixed effects) models, containing
both fixed and random effects. The most complex spatiotemporal model

Fig. 3. The raw data from Hamley and Skud (1978). Each panel is a separate site, and each line represents a series of sets fished at different spacings on the same day. Day number is
colored. Sets with zero catch are removed.
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(using fsmoother) has 30 fixed effects and 59,254 total random effects
(1116 for vessel effects, 2765 for spatial, 55,300 for spatiotemporal,
and 43 for smoother deviations). To fit these large, complex mixed ef-
fects models we used Template Model Builder (Kristensen, 2017;
Kristensen et al., 2016), which is a freely available tool that uses au-
tomatic differentiation to fit models using maximum marginal like-
lihood and random effect integration via the Laplace approximation
(Skaug and Fournier, 2006). Uncertainties in fixed effects were esti-
mated using standard frequentist asymptotic assumptions, and derived
quantities (such as hook power and relative abundance) via the Delta
method, both of which are computed automatically by TMB.

INLA is a popular software tool for spatial models, and here we used
it to generate inputs for the stochastic partial differential equation ap-
proach for our spatiotemporal model (Lindgren and Rue, 2015). This
model could have been fit with INLA (Rue et al., 2009), but by using
TMB we had the convenience of a consistent software platform for in-
ference of all models.

3. Results

The spatiotemporal fishery-dependent analysis using the smoother
hook spacing form showed a clear trend toward decreasing power of
hooks with smaller spacings, albeit with much uncertainty at spacings
wider than 30 ft (Fig. 4a). The parametric form estimated a maximum
relative hook power, h∞ = 1.771 (SE of 0.057; Table 1). That is, a
hypothetical set fished at spacings wide enough that hooks were in-
dependent would catch 1.771 times as much as at 18 ft. This value for

the parametric form of the experimental data (h∞ = 1.64 (0.28);
Table 2) was similar to that of the fishery-dependent. These estimates
suggest the hook spacing relationship asymptotes slower, and have
lower hook power at smaller spacings than previously estimated
(Fig. 4b). For the experimental model, the effect of local depletion (day
of fishing) was positive and significant: γ = 0.05 (0.01). Overall, this
model had much more uncertainty in the hook spacing effect, despite
assuming λ= 1. In general, the parametric form from Eq. (4) matches
the fits well, suggesting this form is reasonable for halibut.

The spatiotemporal model estimates for the geostatistical properties
were relatively insensitive to the form of hook spacing used (Table 1).
For instance, the variance of the spatiotemporal component (σε) was
0.360, 0.342, and 0.345 for hook spacing effect of constant, smoother,
and parametric forms, respectively. This pattern was not true for the
observation error, σobs, where the models with the parametric form
without space had a substantially larger estimate (0.772) than the
spatiotemporal model (0.654). This 15% reduction in variance is ex-
pected as the spatiotemporal component explains variation in catch due
to sets being proximate in time and space. The spatiotemporal residuals
showed no clear spatial pattern (not shown – confidential), suggesting
the model adequately captured those processes.

When using the fishery-dependent data to estimate trends in relative
abundance the overall pattern was consistent, but there were some
important differences (Figs. 5, S1). All models predicted a relatively
stable period from 1996 to 2004, a decline from 2005 to 2014, and a
significant uptick in 2015. However, the uncertainty estimates for the
spatiotemporal model were larger, particularly compared to the model
without space or a hook spacing effect. There were some smaller annual
differences when the hook spacing was not estimated, such as in 2007.
However, in general the spatial effect had a much larger effect on
predicted abundance trends than the effect of hook spacing. Compared
to a trend estimated using fishery-independent survey data (with con-
stant hook spacing) over the same period of time and general area
(Webster, 2017), our estimates had generally the same trend, but
tended to have smaller year-to-year changes and less uncertainty
(Fig. 6).

4. Discussion

We found clear evidence for reduction in hook fishing power (or
effectiveness) at smaller spacings, supporting the hypothesis that
nearby hooks compete for Pacific halibut. This implies that for CPUE
analyses, the relevant unit of effort is an effective hook. We also found
that the parametric form (Eq. (4)) was a reasonable approximation for
this relationship. Further, the parametric model fits to both the fishery-
dependent and experimental data sets were fairly consistent, demon-
strating this relationship can be estimated directly from commercial
data, without the need for a controlled experiment. Estimating effective
hooks in the CPUE standardization has the added benefit that the un-
certainty in the spacing effect is propagated into the trends of relative
abundance. Lastly, despite a clear hook spacing effect, we found limited
effects on standardized CPUE trends. This was likely because although
there has been a temporal shift to different gear types, on average the
hook spacing has changed slightly over the time period examined.
Comparisons among other regulatory areas with systematic differences
in gear usage may be much more important to the interpretation of
Pacific halibut trends. Further, in other stocks managed with longline
CPUE with significant temporal trends, ignoring hook spacing may
mischaracterize abundance trends and lead to poor management deci-
sions.

Our results support the hypothesis that hooks compete with each
other, at least under the densities observed, and conditioned on the
specific foraging behavior of Pacific halibut. However, the commercial
data used here only contained information on retained legal halibut and
set-level characteristics, and did not include key factors that certainly
affect catch rates. For example, we were not able to account for the

Fig. 4. Estimated hook spacing effects for the smoother (a) and parametric forms from the
spatiotemporal (b) and experimental model (c). Lines and shaded region show estimates
and approximate 95% confidence interval, and red line shows historical parametric fit to
experimental data from (Hamley and Skud, 1978).
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effects of environmental factors nor halibut size structure and density.
Neither we were able to account for multispecies competition, which
also has important influences on longline catch rates (Rodgveller et al.,
2008). Thus, we caution against a biological interpretation of our re-
sults, and against applying our estimates to other species or situations,
as foraging behavior may vary widely and lead to fundamentally dif-
ferent relationships (Fig. 1). For instance, initial captures of sablefish do
not affect subsequent captures leading to a random distribution of oc-
cupied hooks, while Pacific halibut tend to cluster (Sigler, 2000). Future
lab experiments on Pacific halibut or other species, while controlling
for environmental and other key factors, would provide valuable cor-
roboration and further insights in the relationship between individual
foraging behavior, hook competition, and the resulting population-level
hook spacing effects.

The assessment of Pacific halibut uses CPUE that excludes snap and
autoline gear due to concerns over confounding between gear type,
hook spacing, and changes in density (Stewart et al., 2016). Our ana-
lysis provides a method for including all gear types in future analyses
and improving the information on which management is based. Al-
though our analysis is specific to Pacific halibut, similar analyses for
other stocks assessed, at least in part, with standardized longline CPUE
could use a similar approach. For instance, hook spacing for sablefish is
known to be important from experiments, but is not consistently re-
ported for commercial catches and thus cannot be directly used in the
CPUE standardization (Sigler and Lunsford, 2001). Likewise, CPUE
analyses for bigeye tuna account for hooks between floats and hooks
per set, but the length of sets are unreported and thus the effect of hook
spacing is unknown (e.g., Hoyle and Okamoto, 2011). Our results de-
monstrate the potential value in collecting hook spacing for commercial

longline catch data, and suggest incorporating this information in the
future, especially for stocks with temporal or spatial trends hook spa-
cing over time.

Efforts to estimate fish stock status from longline CPUE trends while
ignoring spatial effort have been widely criticized (e.g., see debates in
Hampton et al., 2005; Myers and Worm, 2003; Walters, 2003). As a
consequence, incorporating spatial strata into standardizations is
commonplace (Maunder and Punt, 2004). However, these improved
methods still typically ignore spatial correlation among cells, and can
be sensitive to cell resolution (Ichinokawa and Brodziak, 2010; Tian
et al., 2010). One promising new method for accounting for space in
standardizations is hierarchical spatiotemporal models (Thorson et al.,
2015). Hierarchical models have become increasingly popular tools
across a wide range of applications in fisheries science (Thorson and
Minto, 2014), and their application for spatiotemporal models provides
a natural approach for dealing with spatial complexities when esti-
mating fish densities. In contrast to data collected using a random de-
sign (e.g., surveys), the preferential sampling of commercial data (i.e.,
high density areas are targeted; see Conn et al., 2017; Diggle et al.,
2010) remains an open issue when using these methods. We did not
attempt to address this issue in our simplified model, here used as a
proof of concept and to investigate hook spacing effects, but note we
were encouraged that our estimates closely matched a survey CPUE
trend (Fig. 6). However, before using these methods for management,
we suggest future studies more closely investigate the effects of pre-
ferential sampling, in addition to other factors ignored here (e.g., zero
catches and anisotropy), which may have an important influence on
some stocks. We expect development of these models to continue being
an active area of research, and will eventually be applied widely to
analyze complex spatial fisheries data.

Trends in CPUE may not accurately reflect true trends in abundance
due to a wide variety of confounding factors. Accounting for all such
confounding factors is thus critical for successful fisheries management,
but is a difficult proposition and will be a source of continued research.
For longline gear, in particular, the spacing between hooks clearly ef-
fects the effective effort leading to observed catches. This highlights the
value in collecting hook spacing data on longline sets, particularly if
there is the potential for an annual trend in hook spacing as gear con-
figuration evolves in a fishery. Fortunately, the effective effort implied
by hook spacing can be estimated within a spatially-explicit CPUE
standardization model fit to commercial catch data. Including this ef-
fective hook relationship will likely lead to improved trends in relative
abundance, and hence better management for other species caught by
longline.

Table 2
Model estimates and standard error (parentheses) for the parametric model fit to the
experimental data.

Parameter Estimate (SE)

βs 0.052 (0.015)
γ 0.048 (0.011)
λ 1.0 (−)

∞h 1.636 (0.280)
θ 0.668 (0.062)
σθ 0.211 (0.050)
ϕ −0.133 (0.199)
ση 0.711 (0.142)

Table 1
Select model estimates and standard errors (parentheses) for models with and without space, and the parametric and smoother form for hook spacing. Depending on the model structure
some parameters are not estimated, represented by (−), or the first level of a factor set to zero and thus there is no standard error. See Appendix A Supplementary material for further
results.

No Space No Space Spatiotemporal Spatiotemporal

Symbol Description Smoother Parametric Smoother Parametric
β0 Global intercept 0.334 (0.037) 0.368 (0.035) 0.551 (0.060) 0.572 (0.058)

βd1 Linear effect of depth 3.66E-3 (1.89E-4) 3.65E-3 (1.89E-4) 8.54E-4 (2.72E-4) 1.03E-3 (2.74E-4)

βd2 Quadratic effect of depth −7.46E-6 (8.23E-7) −7.15E-6 (8.23E-7) −3.99E-6 (9.95E-7) −4.43E-6 (9.97E-7)

κ Geostatistical range – – 0.399 (1.07E-2) 0.400 (1.07E-2)
σε Spatiotemporal variation – – 0.342 (5.68E-3) 0.345 (5.70E-3)
σω Spatial variation – – 0.370 (1.04E-2) 0.358 (1.00E-2)
g1 Gear type: autoline 0 (−) 0 (−) 0 (−) 0 (−)
g2 Gear type: fixed 0.341 (0.022) 0.348 (0.020) 0.249 (0.022) 0.269 (0.020)
g3 Gear type: snap 0.093 (0.028) 0.080 (0.026) 0.083 (0.027) 0.099 (0.025)
σobs Observation variance 0.770 (0.002) 0.772 (0.002) 0.653 (0.002) 0.654 (0.002)
ση Vessel variance 0.514 (0.013) 0.515 (0.013) 0.360 (0.010) 0.361 (0.010)

βs Parametric hook spacing – 0.099 (0.515) – 0.024 (0.040)

λ Parametric hook spacing – 0.567 (2.948) – 1.925 (3.211)
σd Smoother variation 0.142 (0.024) – 0.140 (0.023) –

∞h Hook power at infinite spacing – 1.570 (0.042) – 1.771 (0.057)
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